Linear Regression: Multiple Predictors
|
Model |
R |
R² |
Adjusted R² |
RMSE |
AIC |
BIC |
R² Change |
F Change |
df1 |
df2 |
p |
M₀ |
|
0.000 |
|
0.000 |
|
0.000 |
|
80.699 |
|
2326.863 |
|
2333.460 |
|
0.000 |
|
|
|
0 |
|
199 |
|
|
|
M₁ |
|
0.815 |
|
0.665 |
|
0.660 |
|
47.087 |
|
2114.337 |
|
2130.828 |
|
0.665 |
|
129.498 |
|
3 |
|
196 |
|
< .001 |
|
|
Note.
M₁ includes Adverts, Airplay, Image |
|
Model |
|
Sum of Squares |
df |
Mean Square |
F |
p |
M₁ |
|
Regression |
|
861377.418 |
|
3 |
|
287125.806 |
|
129.498 |
|
< .001 |
|
|
|
Residual |
|
434574.582 |
|
196 |
|
2217.217 |
|
|
|
|
|
|
|
Total |
|
1.296×10+6
|
|
199 |
|
|
|
|
|
|
|
|
Note.
M₁ includes Adverts, Airplay, Image |
Note.
The intercept model is omitted, as no meaningful information can be shown. |
|
|
95% CI
|
Collinearity Statistics
|
Model |
|
Unstandardized |
Standard Error |
Standardized |
t |
p |
Lower |
Upper |
Tolerance |
VIF |
M₀ |
|
(Intercept) |
|
193.200 |
|
5.706 |
|
|
|
33.857 |
|
< .001 |
|
181.947 |
|
204.453 |
|
|
|
|
|
M₁ |
|
(Intercept) |
|
-26.613 |
|
17.350 |
|
|
|
-1.534 |
|
0.127 |
|
-60.830 |
|
7.604 |
|
|
|
|
|
|
|
Adverts |
|
0.085 |
|
0.007 |
|
0.511 |
|
12.261 |
|
< .001 |
|
0.071 |
|
0.099 |
|
0.986 |
|
1.015 |
|
|
|
Airplay |
|
3.367 |
|
0.278 |
|
0.512 |
|
12.123 |
|
< .001 |
|
2.820 |
|
3.915 |
|
0.959 |
|
1.043 |
|
|
|
Image |
|
11.086 |
|
2.438 |
|
0.192 |
|
4.548 |
|
< .001 |
|
6.279 |
|
15.894 |
|
0.963 |
|
1.038 |
|
|
|
|
95% CI* |
Model |
|
Unstandardized |
Bias |
Standard Error |
p* |
Lower |
Upper |
M₀ |
|
(Intercept) |
|
193.200 |
|
0.081 |
|
5.711 |
|
< .001 |
|
182.199 |
|
204.600 |
|
M₁ |
|
(Intercept) |
|
-26.362 |
|
0.766 |
|
15.983 |
|
0.108 |
|
-55.858 |
|
5.846 |
|
|
|
Adverts |
|
0.085 |
|
-9.542×10-5
|
|
0.007 |
|
< .001 |
|
0.071 |
|
0.098 |
|
|
|
Airplay |
|
3.359 |
|
-0.001 |
|
0.309 |
|
< .001 |
|
2.771 |
|
3.987 |
|
|
|
Image |
|
11.091 |
|
-0.099 |
|
2.247 |
|
< .001 |
|
6.477 |
|
15.298 |
|
|
Note.
Bootstrapping based on 5000 replicates. |
Note.
Coefficient estimate is based on the median of the bootstrap distribution. |
* Bias corrected accelerated. |
|
|
N |
Mean |
SD |
SE |
Sales |
|
200 |
|
193.200 |
|
80.699 |
|
5.706 |
|
Adverts |
|
200 |
|
614.412 |
|
485.655 |
|
34.341 |
|
Airplay |
|
200 |
|
27.500 |
|
12.270 |
|
0.868 |
|
Image |
|
200 |
|
6.770 |
|
1.395 |
|
0.099 |
|
|
|
Model |
|
Partial |
Part |
M₁ |
|
Adverts |
|
0.659 |
|
0.507 |
|
|
|
Airplay |
|
0.655 |
|
0.501 |
|
|
|
Image |
|
0.309 |
|
0.188 |
|
|
Note.
The intercept model is omitted, as no meaningful information can be shown. |
|
|
Variance Proportions |
Model |
Dimension |
Eigenvalue |
Condition Index |
(Intercept) |
Adverts |
Airplay |
Image |
M₁ |
|
1 |
|
3.562 |
|
1.000 |
|
0.003 |
|
0.023 |
|
0.011 |
|
0.003 |
|
|
|
2 |
|
0.308 |
|
3.401 |
|
0.006 |
|
0.960 |
|
0.053 |
|
0.008 |
|
|
|
3 |
|
0.109 |
|
5.704 |
|
0.054 |
|
0.015 |
|
0.932 |
|
0.069 |
|
|
|
4 |
|
0.020 |
|
13.219 |
|
0.937 |
|
0.002 |
|
0.003 |
|
0.921 |
|
|
Note.
The intercept model is omitted, as no meaningful information can be shown. |
|
Case Number |
Std. Residual |
Sales |
Predicted Value |
Residual |
Cook's Distance |
DFBETAS:Intercept |
DFBETAS:Adverts |
DFBETAS:Airplay |
DFBETAS:Image |
Covariance Ratio |
1 |
|
2.177 |
|
330.000 |
|
229.920 |
|
100.080 |
|
0.059 |
|
-0.316 |
|
-0.242 |
|
0.158 |
|
0.353 |
|
0.971 |
|
2 |
|
-2.323 |
|
120.000 |
|
228.949 |
|
-108.949 |
|
0.011 |
|
0.013 |
|
-0.126 |
|
0.009 |
|
-0.019 |
|
0.920 |
* |
10 |
|
2.130 |
|
300.000 |
|
200.466 |
|
99.534 |
|
0.018 |
|
-0.013 |
|
-0.156 |
|
0.168 |
|
0.007 |
|
0.944 |
|
47 |
|
-2.461 |
|
40.000 |
|
154.970 |
|
-114.970 |
|
0.024 |
|
0.066 |
|
0.196 |
|
0.048 |
|
-0.179 |
|
0.915 |
* |
52 |
|
2.099 |
|
190.000 |
|
92.597 |
|
97.403 |
|
0.033 |
|
0.353 |
|
-0.029 |
|
-0.137 |
|
-0.270 |
|
0.960 |
|
55 |
|
-2.456 |
|
190.000 |
|
304.123 |
|
-114.123 |
|
0.040 |
|
0.174 |
|
-0.326 |
|
-0.023 |
|
-0.124 |
|
0.925 |
* |
61 |
|
2.104 |
|
300.000 |
|
201.190 |
|
98.810 |
|
0.006 |
|
8.189×10-4
|
|
-0.015 |
|
0.028 |
|
0.021 |
|
0.937 |
* |
68 |
|
-2.364 |
|
70.000 |
|
180.416 |
|
-110.416 |
|
0.022 |
|
-0.003 |
|
0.211 |
|
-0.148 |
|
-0.018 |
|
0.924 |
* |
100 |
|
2.095 |
|
250.000 |
|
152.713 |
|
97.287 |
|
0.031 |
|
0.061 |
|
0.145 |
|
-0.300 |
|
0.068 |
|
0.959 |
|
164 |
|
-2.629 |
|
120.000 |
|
241.324 |
|
-121.324 |
|
0.071 |
|
0.180 |
|
0.290 |
|
-0.401 |
|
-0.117 |
|
0.920 |
* |
169 |
|
3.093 |
|
360.000 |
|
215.868 |
|
144.132 |
|
0.051 |
|
-0.168 |
|
-0.258 |
|
0.257 |
|
0.170 |
|
0.853 |
* |
200 |
|
-2.088 |
|
110.000 |
|
207.206 |
|
-97.206 |
|
0.025 |
|
0.166 |
|
-0.046 |
|
0.142 |
|
-0.259 |
|
0.954 |
|
|
* Potentially influential case, according to the selected influence measure. |
Residuals vs. Predicted

Standardized Residuals Histogram

Q-Q Plot Standardized Residuals

Partial Regression Plots
Sales vs. Adverts

Sales vs. Airplay

Sales vs. Image
